CHALMERS

UNIVERSITY OF TECHNOLOGY

Influence of Entire Turbulent Spectrum on Modeling of Breakup in Liquid-Liquid Systems

By: Mohsen Karimi & Ronnie Andersson

Problem Definition

Turbulent Spectrum

- Different regions of the spectrum,
- Available models: breakup only occurs in the inertial subrange,
- Lack of modeling strategies for other subranges!

Formulation of a Breakup Rate Model

Entire spectrum vs. Inertial subrange

- Approximating the eddy velocity using the second-order structure function:
 - Kolmogorov for <u>inertial subrange</u>:

$$\langle [\delta v]^2 \rangle (\lambda) = \mathcal{C} \times (\varepsilon \lambda)^{2/3}$$

Davidson for <u>entire spectrum</u>:

$$\langle [\delta v]^2 \rangle (\lambda) = \frac{4}{3} \int_{-\infty}^{\infty} E(\kappa) \left[1 - 3 \left\{ \frac{\sin(\kappa \lambda)}{(\kappa \lambda)^3} + \frac{\cos(\kappa \lambda)}{(\kappa \lambda)^2} \right\} \right] d\kappa$$

Entire spectrum vs. Inertial subrange (cont.)

- Practical definition of inertial subrange based on the overlapping zone,
- Improved understanding of the contribution of turbulent energy spectrum.

Upgrading the breakup model

- Turbulent eddy velocity,
- Number density of eddies,
- Life time of eddies,
- Comparing interaction frequency
 using two formulations

Upgrading the breakup model (cont.)

- Updated model should work for both the inertial subrange and outside this region.
- Example 1. Inertial subrange (Direct measurements)

Phases (continuous- dispersed)	Droplet diameter [m]	Exp. Breakup rate [m ⁻³ s ⁻¹]	Opera	ational condi	Turbulent details		
			$\sigma [N m^{-1}]$	$ ho_{d} [kg m^{-3}]$	$\mu_d[Pas]$	$\varepsilon \left[m^2 s^{-3}\right]$	8.5
Water-Dodecane (Andersson and Andersson, 2006)	5×10 ⁻⁴	0.24				$k [m^2 s^2]$	0.087
	7×10 ⁻⁴	1.0				L [m]	3.02×10 ⁻³
	9×10 ⁻⁴	3.1	0.053	750.0	0.0015	$\eta \ [m]$	1.86×10⁻⁵
	1×10 ⁻³	4.9				$\lambda_T \ [m]$	3.21×10 ⁻⁴
						Re _L [–]	889.35

Example 1. Inertial subrange

- Drop diameters within the inertial subrange.
- Similar predictions for both models (no surprise!).
- <u>The updated model works for</u> the inertial subrange.

Example 2. Entire spectrum

• Direct measurements of breakup rates:

Phases (continuous- dispersed)	Droplet diameter [m]	Exp. Breakup rate [m ⁻³ s ⁻¹]	Operat	ional cond	Turbulent details		
			$\sigma [N m^{-1}]$	$\rho_d [kg m^{-3}]$	$\mu_d[Pas]$	$\epsilon [m^2 s^{-3}]$	200.0
Water-Rapeseed oil	1×10 ⁻⁴	0.0	0.020	920.0	0.0699	$k [m^2 s^2]$	0.4
	2×10 ⁻⁴	25.47				L [m]	0.0013
	3×10 ⁻⁴	35.78				$\eta \ [m]$	8.43×10 ⁻⁶
	4×10 ⁻⁴	126.32				$\lambda_T [m]$	1.42×10 ⁻⁴
	5×10 ⁻⁴	214.29				$Re_L[-]$	796.81

Example 2. Entire spectrum (cont.)

- A unique data point outside the inertial subrange.
- The updated model starts to show improvements toward the dissipation subrange.
- The updated model works outside the inertial subrange.

Upgrading other breakup models

- Commonly used models,
- Improvement for the dissipation subrange,
- The model structure might not accommodate further improvements.

Upgrading other breakup models (cont.)

- Model extension depending on model formulation,
- Higher predictive capabilities toward dissipation subrange,
- Extension of breakup kernels: when the droplet diameters are not limited to the inertial subrange.

Concluding Remarks

- Importance of entire turbulent spectrum for modeling fluid particles breakup.
- A more realistic representation of turbulent structures (numbers, velocity, and inertial subrange).
- Validated model confirms the benefits of the entire turbulent spectrum for breakup formulation.